The conjugate of the pointwise maximum of two convex functions revisited
نویسندگان
چکیده
In this paper we use the tools of the convex analysis in order to give a suitable characterization for the epigraph of the conjugate of the pointwise maximum of two proper, convex and lower semicontinuous functions in a normed space. By using this characterization we obtain, as a natural consequence, the formula for the biconjugate of the pointwise maximum of two functions, provided the so-called Attouch-Brézis regularity condition holds.
منابع مشابه
Some Properties of Certain Subclasses of Close-to-Convex and Quasi-convex Functions with Respect to 2k-Symmetric Conjugate Points
متن کامل
SOLVING FUZZY LINEAR PROGRAMMING PROBLEMS WITH LINEAR MEMBERSHIP FUNCTIONS-REVISITED
Recently, Gasimov and Yenilmez proposed an approach for solving two kinds of fuzzy linear programming (FLP) problems. Through the approach, each FLP problem is first defuzzified into an equivalent crisp problem which is non-linear and even non-convex. Then, the crisp problem is solved by the use of the modified subgradient method. In this paper we will have another look at the earlier defuzzifi...
متن کاملOn the Pointwise Maximum of Convex Functions
We study the conjugate of the maximum, f ∨ g, of f and g when f and g are proper convex lower semicontinuous functions on a Banach space E. We show that (f ∨g)∗∗ = f∗∗ ∨g∗∗ on the bidual, E∗∗, of E provided that f and g satisfy the Attouch-Brézis constraint qualification, and we also derive formulae for (f ∨ g)∗ and for the “preconjugate” of f∗ ∨ g∗.
متن کاملTwo Settings of the Dai-Liao Parameter Based on Modified Secant Equations
Following the setting of the Dai-Liao (DL) parameter in conjugate gradient (CG) methods, we introduce two new parameters based on the modified secant equation proposed by Li et al. (Comput. Optim. Appl. 202:523-539, 2007) with two approaches, which use an extended new conjugacy condition. The first is based on a modified descent three-term search direction, as the descent Hest...
متن کاملSweep Line Algorithm for Convex Hull Revisited
Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Global Optimization
دوره 41 شماره
صفحات -
تاریخ انتشار 2008